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Two-dimensional (2D) flows of fluids with high Reynolds numbers, such as oceanic

and atmospheric flows, often show large-scale patterns, including Jupiter’s red spot and

Kuroshio of the north pacific ocean. Studies for the last two decades have revealed that

such a large-scale stationary pattern is described as an equilibrium state of statistical

mechanics, i.e., the state of maximizing a Shannon entropy functional with respect to

the vorticity level of the 2D Euler equations [2].

Here, let us recall ordinary thermodynamic systems, to which equilibrium statis-

tical mechanics is most typically applied. When the system is far from equilibrium,

it often shows a non-equilibrium temporal motion on macroscopic scales, such as limit

cycle, through bifurcations.

By thinking parallelly, when the above 2D fluid is far from the reference stationary

pattern, we expect a large-scale non-stationary motion, through bifurcations. In the

present talk, we indeed discover temporal oscillation in the 2D Euler equations [1].

We consider the 2D Euler equations on a doubly periodic domain. When the initial

condition is near the entropy maximizing stationary flow, the system relaxes close to this

stationary flow. When the initial condition is very far from the reference stationary flow,

in contrast, we observe a non-stationary pattern of flow; positive and negative coherent

vortices moves pairwise along stream line. This motion lasts stably, without relaxing

to the reference stationary state, and therefore regarded as a limit cycle on the largest

scale.

Investigating this phase transition from stationary to non-stationary flow, by intro-

ducing an order parameter, shows that this oscillation appears through Hopf bifurcation.

This indicates the structure of low-dimensional dissipative dynamical system embedded

in the high-dimensional conservative dynamics of the 2D Euler equations.

In addition, we examine how the large-scale oscillation is kept stable, through a dy-

namic self-consistent theory. We explain that this oscillation is sustained by collectively

organizing a self-oscillating state. Note that this mechanism is common to collective

oscillation in N-body Hamiltonian systems [3].
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