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1 Introduction

In this talk, we are concerned with the Gel’fand problem in two space dimensions:

−∆u = λeu in Ω, u = 0 on ∂Ω. (1)

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω and λ > 0 is a parameter. Let {λn}n∈N

be a sequence satisfying λn ↓ 0 and un = un(x) be a solution to (1) for λ = λn. The fundamental facts
concerning the asymptotic behavior of un are established by the pioneering work of Nagasaki and Suzuki:

Fact 1 ([14]). Let Σn = λn

∫
Ω
eun . Then {Σn} accumulate to Σ∞ which is either

(i) 0, (ii) 8πm (m ∈ N), or (iii) +∞.

According to these cases, the (sub-)sequence of solutions {un} behave as follows:

(i) uniform convergence to 0,

(ii) m-point blow-up, that is, there is a blow-up set S = {κ1, . . . , κm} ⊂ Ω of distinct m-points such
that

un −→ u∞(x) = 8π
m∑
j=1

G(x, κj) locally uniformly, (2)

where G(x, y) is the Green function of −∆ under the Dirichlet condition, that is,

−∆G(·, y) = δy in Ω, G(·, y) = 0 on ∂Ω.

(iii) entire blow-up, that is, un(x) −→ +∞ for every x ∈ Ω.

Moreover, the blow-up points κi(i = 1, · · · ,m) in case (ii) satisfy the relations

∇

K(x, κi) +
∑

1≤j≤m, j ̸=i

G(x, κj)

∣∣∣∣∣∣
x=κi

= 0, (3)

where K(x, y) = G(x, y)− 1
2π log |x− y|−1.

K(x, y) is called the regular part of the Green function G(x, y). Here we set R(x) = K(x, x) and
introduce the function

Hm(x1, . . . , xm) =
1

2

m∑
j=1

R(xj) +
1

2

∑
1≤j,k≤m, j ̸=k

G(xj , xk),

which we call the Hamiltonian. Since G(x, y) = G(y, x) and K(x, y) = K(y, x), the relation (3) means
that S ∈ Ωm is a critical point of the function Hm of 2m-variables. Therefore we are able to say that the
limit function of {un} blows up at a critical point of the Hamiltonian Hm. Concerning this link between
Hm and {un}, recently we get the following result:
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Theorem 2 ([8]). Suppose S in (ii) of Theorem 1 is a non-degenerate critical point of Hm. Then the
associated un for n ≫ 1 is a non-degenerate critical point of the functional

Fλn(u) =
1

2

∫
Ω

|∇u|2dx− λn

∫
Ω

eudx.

It is easy to see that the equation (1) is the Euler-Lagrange equation of the functional Fλ. Therefore
we may say that Theorem 2 insists deeper links between the functional Fλ and the function Hm than
Theorem 1. This kind of result is sometimes called the asymptotic non-degeneracy and the above theorem
has been already established by Gladiali and Grossi [5] for the case m = 1. Several studies also exist for
other kind of equations (e.g., [7], [18]), but they also consider the 1-point blow-up cases. See also [6] for
further correspondence concerning the Morse indices between Fλ and Hm for the case m = 1.

2 A short note on Hm

The Hamiltonian function Hm is rather popular in fluid mechanics. This is the Hamiltonian of vortices
in two-dimensional incompressible non-viscous fluid.

Formally speaking, N -vortices is a set {(xj(t),Γj)}j=1,··· ,N (⊂ Ω × (R\{0})) that forms a vorticity

field ω(x, t) =
∑N

j=1 Γjδxj(t) satisfying the Euler vorticity equation

∂ω

∂t
+ (v · ∇)ω = 0, (4)

where v = ∇⊥ ∫
Ω
G(x, y)ω(y, t)dy is the velocity field of the fluid. Here ∇⊥ =

(
∂

∂x2
,− ∂

∂x1

)
and we

assumed that Ω is simply connected for simplicity. δp is the Dirac measure supported at the point
p (∈ Ω) and Γj is the intensity (circulation) of the vortex at xj(t). From the Kelvin circulation law,
the intensity Γj is considered to be conserved. From other several physical considerations, the form∑N

j=1 Γjδxj(t) is considered to be preserved during the time evolution.
It is true that the model “vortices” made many success to understand the motion of real fluid, but

it should be noticed that the velocity field v =
∑N

j=1 Γj∇⊥G(x, xj(t)) determined by the vorticity field∑N
j=1 Γjδxj(t) makes the kinetic energy 1

2

∫
Ω
|v|2dx infinite. Moreover it is difficult to understand, even in

the sense of distributions, how it satisfies the vorticity equation (4). Nevertheless the motion of vortices
have been “known” from 19th century. Indeed, they are considered to move according to the following
equations:

Γi
dxi

dt
= ∇⊥

i H
N,Γ(x1, · · · , xN )

(
=

(
∂HN,Γ

∂xi,2
,−∂HN,Γ

∂xi,1

))
, (5)

where

HN,Γ(x1, · · · , xN ) =
1

2

N∑
j=1

Γ2
jK(xj , xj) +

1

2

∑
1≤j,k≤N, j ̸=k

ΓjΓkG(xj , xk)

and xi = (xi,1, xi,2). It is easy to see that the value of HN,Γ is preserved under the time evolution of
vortices. Therefore HN,Γ is called the Hamiltonian of vortices.

Hm referred in Fact 1 corresponds to the special case N = m and Γ = (Γ1, · · · ,Γm) = (1, · · · , 1),
that is, m-vortices of one kind. Therefore S in Fact 1, that is, the possible blow-up set of the solution
sequence of the Gel’fand problem is a critical point of Hm of m-vortices of one kind.

3 On the contrary...

It should be remarked that we are able to get the Gel’fand problem form this special Hamiltonian Hm.
Indeed suppose all the intensities of vortices is equivalent to some constant Γ. Then the Hamiltonian of
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m-vortices Hm,Γ reduces to Γ2Hm. In this situation, the Gibbs measure associated to this Hamiltonian
is given as follows:

µm =
e−β̃Γ2Hm(x1,··· ,xm)∫

Ωm e−β̃Γ2Hm(x1,··· ,xm)dx1 · · · dxm

dx1 · · · dxm,

where β̃ is a parameter called the inverse temperature. The canonical Gibbs measure is considered in
statistical mechanics to give the possibility of the state for given energy Hm under the fixed (inverse)
temperature. If β̃ > 0 (as usual), the low-energy states are likely to occur. On the contrary, if β̃ < 0
(negative temperature cases), the high energy states have more possibility to occur, which is considered
to give some reason why there are often observed large-scale long-lived structures in two-dimensional
turbulence. One of the most famous example of such structures is the Jupiter’s great red spot. The
idea to relate such structures to negative temperature states of equilibrium vortices is first proposed by
Onsager [16].

Using the canonical Gibbs measure, we are able to get the probability (density) of the first vortex
observed at x1 ∈ Ω from

ρm(x1) =

∫
Ωm−1

µmdx2 · · · dxm,

which is equivalent to every vortices from the symmetry of Hm. Now we assume that total vorticity is
equivalent to 1, that is, Γ = 1

m and suppose β̃ = β̃∞ ·m for some fixed β̃∞ ∈ (−8π,+∞). Then we get ρ
satisfying the following equation at the limit of ρm as m −→ ∞:

ρ(x) =
e−β̃∞Gρ(x)∫

Ω
e−β̃∞Gρ(x)dx

, (6)

where G is the Green operator given by Gρ(x) =
∫
Ω
G(x, y)ρ(y)dy ([2, Thorem 2.1]). This ρ is called the

mean field of the equilibrium vortices of one kind. It should be remarked that when the solution of (6)
is unique, ρm weakly converges to ρ, and not unique, to some superposition of ρ.

These argument was established mathmatically rigorously by Caglioti-Lions-Marchioro-Pulvirenti [2]
and Kiessling [10] independently based on the argument developped by Messer-Sphon [13], see also
[12]. We note that the equations similar to (6) are derived by several authors under several physically
reasonable assumptions and arguments in several situations, e.g., the system of vortices of neutral and
two kinds, that means there exist same numbers of vortices with positive or negative intensities with the
same absolute value, was considered in [9, 17].

We also note that (6) means u := −β̃∞Gρ and β := −β̃∞ satisfy

−∆u = β
eu∫

Ω
eu dx

in Ω, u = 0 on ∂Ω. (7)

Therefore each solution of (7) is linked to that of the Gel’fand problem (1) under the relation β/
∫
Ω
eudx =

λ, that is, β = λ
∫
Ω
eudx(= Σ). The behaviors of the sequences of solutions of (7) with β > 0 (that is,

β̃∞ = −β is negative !) are now well studied by several authors. Especially based on the argument in [1]
(see also [15]), we are able to get a subsequence satisfying

∫
Ω
eun dx −→ ∞ if {(un, βn)} is a sequence of

solutions of (7) satisfying that {un} is unbounded in L∞ (Ω) although {βn} is bounded. Therefore, the
behaviors of unbounded sequence of solutions of (7) with bounded {βn} reduce to those of (1) satisfying
λn = βn/

∫
Ω
eun dx −→ 0. Consequently we return to the situation of Fact 1 when we consider the mean

field of equilibrium vortices with negative temperature and are able to represent the conclusion of Fact 1
as follows:

The mean fields generated by equilibrium vortices of one kind with negative temperature
converge only to the stationary vortices of one kind.

I consider that Theorem 2 is a next answer to the question “To what extent can the Hamiltonian of
vortices illustrate the mean field of equilibrium vortices ?”
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4 Sketch of the proof of Theorem 2

Similarly to [5], we prove Theorem 2 arguing by contradiction. For this purpose we assume the existence
of a sequence {vn} of non-degenerate critical point of Fλn as n −→ ∞. Using the standard arguments,
vn is a non-trivial solution of the linealized problem of (1):

−∆v = λne
unv in Ω, v = 0 on ∂Ω. (8)

Without loss of generality we may assume that ∥vn∥L∞(Ω) ≡ 1.
Taking sufficiently small R̄ > 0, we may assume that for each κj there exists a sequence {xj,n}

satisfying
xj,n −→ κj , un(xj,n) = max

BR̄(xj,n)
un(x) −→ ∞.

Then we re-scale un and vn around xj,n as follows:

ũj,n(x̃) = un(δj,nx̃+ xj,n)− un(xj,n) in B R̄
δj,n

(0),

ṽj,n(x̃) = vn(δj,nx̃+ xj,n) in B R̄
δj,n

(0),

where the scaling parameter δj,n is chosen to satisfy λne
un(xj,n)δ2j,n = 1. From the standard argument

based on the estimate concerning the blow-up behavior of un [11] and the classification result of the
solutions of (1) and (8) in the whole space [3, 4], there exist aj ∈ R2, bj ∈ R for each j and subsequences
of un and vn satisfying

ũj,n −→ log
1(

1 + |x̃|2
8

)2 , ṽj,n −→ aj · x̃
8 + |x|2

+ bj
8− |x̃|2

8 + |x̃|2
,

locally uniformly. We shall show aj = 0 and bj = 0.

The proof is divided into 3 steps:
Step 1: We show the following asymptotic behavior for (a subsequence of) vn:

vn

λ
1
2
n

−→ 2π

m∑
j=1

Cjaj · ∇yG(x, κj) (9)

locally uniformly in Ω\ ∪m
j=1 B2R̄ (κj), where Cj > 0 is some constant.

Step 2: Using the fact that S is a non-degenerate critical point of Hm, we show aj = 0 for every j.
Step 3: We show bj = 0 for every j and consequently we show the uniform convergence vn −→ 0 in Ω,
which contradicts ∥vn∥L∞(Ω) ≡ 1.

Here we remark further on Step 2, which is based on the simple observation that

−∆uxi = λeuuxi , (10)

holds for every solution u of (1), that is, uxi = ∂u
∂xi

is always a solution of (8) except for the boundary
condition. Then using the Green identity, we get∫

∂BR(κj)

(
∂

∂ν
(un)xivn − (un)xi

∂

∂ν
vn

)
dσ = 0. (11)

for every κj and sufficiently small R (> 2R̄) > 0. From the know asymptotic behaviors of un and vn, we
are able to see that the limit of the above identity is a linearly combination of the integration

Iij :=

∫
∂BR(z1)

{
∂

∂νx
Gxi(x, z2)Gyj (x, z3)−Gxi(x, z2)

∂

∂νx
Gyj (x, z3)

}
dσx.
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We are able to calculate this and get some localized versions of the known integral identity for the Green
function:

Iij = Iij(z1, z2, z3) =


0 (z1 ̸= z2, z1 ̸= z3),
1
2Rxixj

(z1) (z1 = z2 = z3),
Gxiyj (z1, z3) (z1 = z2, z1 ̸= z3),
Gxixj

(z1, z2) (z1 ̸= z2, z1 = z3).

(12)

Collecting the limit of (11) for all j = 1, · · · ,m, we get

0 =16π2 HessHm|(x1,··· ,xm)=(κ1,··· ,κm)
t(C1a1, · · · , Cmam).

This gives aj = 0 from the assumption that HessHm is invertible at S .
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