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We consider vortex filament systems composed of nearly parallel vortex fila-
ments in a columnar region with cross section Q C R?, in the frame of P-broken
path model with the periodic boundary condition. From the fact that they
are described by Hamiltonian systems, several mean field equations have been
derived [1, 3]. For the system with a probability measure P(da) on [—1,1]
which describes the number density of the filaments with a certain circulation
a™ e [—-1,1]:
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the following mean field equation is derived.
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S : structure parameter, A : transformed inverse temperature.

Tpy1 = T1,

The vortex filament system is thought as an extension to three dimensional
case of the point vortex system. In the point vortex system, the quantization
of blowup mechanism [2], the existence of the solution [4] of the mean field
equations, and the dual variational structure [5, 6] have been investigated. In
more detail, Lagrangian L(v,u) on X x X*, (X = H}(Q), X* = H~Y(Q)) for
the mono-circulation point vortex system is defined by
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and the Toland duality
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is satisfied, where
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The mean field equations for this sysytem are derived as Euler-Lagrange equa-
tions from the variational functionals J and J*. Here, we note that v and u are
related to the stream function and vorticity, respectively.

For the mono circulation vortex filament system (P(da) = d4+1(da)), the
mean field equation
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has a variational formulation, and the variational functional for vy,--- ,vp €
H}(Q) is given by
J(vi,-- ,vp)
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We obtain the following results.

Theorem 1 This system is equipped with a dual variational structure, as in the
case of the point vortex system.

Theorem 2 There exists a global minimizer for variational functional J and
the classical solution to the mean field equation for vy,--- ,vp, if A € (0,87).

This study is a joint work with Prof. T. Suzuki.
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